
Journal of Power Sources 128 (2004) 239–246

Diagnosis of automotive fuel cell power generators
D. Hissel∗, M.C. Péra, J.M. Kauffmann

Laboratory of Electrical Engineering and Systems (L2ES),
UTBM/UFC/INRETS Joint Research Unit LRE-T31, UTBM, Rue Thierry Mieg, 90010 Belfort Cedex, France

Received 24 February 2003; received in revised form 29 September 2003; accepted 6 October 2003

Abstract

Most of car manufacturers around the world have launched important research programs on the integration of fuel cell (FC) power
generators into cars. Despite the first achievements, fuel cell systems are still badly known, particularly when talking about fault diagnosis and
predictive maintenance. This paper proposes a first step in this way by introducing a simple but also efficient diagnosis-oriented model of a
proton exchange membrane fuel cell (PEMFC). The considered diagnosis model is here a fuzzy one and is tuned thanks to genetic algorithms.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Electrical energy is now accepted as a clean and univer-
sally available source of energy in almost all areas of life.
One exception is road traffic. Despite the fact that electri-
cal vehicles dominated the early development of motor cars,
the internal combustion engine (ICE) has prevailed because
of the high-energy density of petrol. Nevertheless, in the
past few years, auto manufacturers around the world have
launched important research programs on fuel cells (FCs) as
major long term energy-conversion solutions because they
offer high fuel economy, through higher efficiency from the
stack to the wheel, and substantially lower emissions, par-
ticularly of CO2. Of course, many of these manufacturers
have already demonstrated buses or cars powered by fuel
cells, most of them by proton exchange membrane fuel cells
(PEMFCs). For example, it is possible to name the series of
Necar (I–V) proposed by Daimler-Chrysler, theThink FC5
proposed by Ford, theHy-wire proposed by General Motors,
theDemio FCEV proposed by Mazda, theH20 proposed by
PSA and so on. Most of them are single powered by fuel
cells, some hybrid solutions have also been presented, such
as theHonda FCX-V3 [1]. In association with the fuel cell
manufacturers, great efforts have already been done in order
to improve the stack performances[2].

However, in most cases, the efficiency of the global power
system is still reduced due to the lack of specific and opti-
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mized auxiliaries. Considering the PEMFC case, a complex
and energy-intensive reactant control and conditioning sys-
tem is required. In fact, compression and humidification of
the reactant air are particularly critical, because these pro-
cesses can require about half the energy produced by the
fuel cell. Moreover, the cost of a fuel cell vehicle is still,
nowadays, much too high for considering an introduction on
the market at a competitive price. The choice of fuel is an-
other crucial problem: shall the hydrogen be directly stored
on-board or shall it be produced from fossil fuels? Moreover,
if on-board hydrogen storage is chosen, the whole fuel dis-
tribution infrastructure should be reconsidered[3]. Finally,
fuel cell systems diagnosis tools must be available on the
market to perform faults diagnosis and predictive mainte-
nance on the vehicle.

The aim of this paper is to propose a first step in the
direction of fuel cell systems diagnosis. To achieve this aim,
a diagnosis-oriented model of a fuel cell power generator
dedicated to automotive applications is proposed.

Considering only the static behavior of a PEM fuel cell,
the fuel cell voltage can be expressed as a function of the
current density following (Eq. (1)) [4]:
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whereE is the fuel cell voltage,Et,c the cathode theoretical
potential,R the gas constant,T the temperature,F the Fara-
day constant,i the current density,i0,c andi0,a the cathode
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Fig. 1. General diagnosis process.

and anode reaction exchange current density,α the charge
transfer coefficient,z the reaction charge number,CH2 and
CO2 the hydrogen and oxygen bulk concentrations,CS

H2
and

CS
O2

the hydrogen and oxygen electrode surface concentra-
tions, andr is the area specific resistance.

Of course, such an expression is very difficult to use in
a diagnosis process for a car manufacturer because the con-
centrations and the reaction current densities cannot be ac-
cessed in real time. Thus, a fuzzy description of the fuel cell
behavior has here been preferred.

The bases of a fuzzy diagnosis model are recalled in the
first part of this paper. Then, the description of the most
commonly seen faults on a fuel cell system is done, under-
lining from what kind of measures on a real fuel cell vehicle
these faults must be deducted. In the second part of the pa-
per, the fuzzy logic diagnosis model of the PEMFC power
generator is described. This fuzzy diagnosis model is here
tuned thanks to genetic algorithms. Finally, simulation and
experimental results will be discussed.

2. Fuzzy diagnosis on a fuel cell power generator
implemented in a vehicle

2.1. Bases of fuzzy diagnosis

As in all other diagnosis methods, the first step in the
diagnosis process is here to obtainresiduals (Fig. 1) by
comparing what is currently obtained on a considered sys-
tem (calledobservations) to what is normally obtained on
this system under the same operating conditions (called
references). These residuals have to reflect the faults on the
process but also to avoid disturbances (caused by noise or
modeling errors).

The residuals have then to be quantified to producesymp-
toms. The main problem is here to fix thresholds for each
residual from whose a default will be considered. The ob-
jective of this quantification stage is thus to determine if a
fault is occurring on the system. The last stage in the diag-
nosis process is then to find the cause of the fault. This is
done by comparing the symptoms toreferences signatures
coming, in most cases, from expert knowledge on the con-
sidered system.

The computation of residuals is most commonly done by
using analytical models of the considered system. This can
be easily done and is the most powerful when the physi-

Fig. 2. OLM fuzzy model for residuals evaluation.

cal relations and the physical parameters of the system are
well-known. When the system is more complex and/or when
the physical parameters of this system are not easily mea-
surable, a fuzzy modeling of the system can be considered
[5,6]. Two different kinds of fuzzy model for residuals gen-
eration can be considered: the Open Loop Model (OLM)
(Fig. 2) and the Closed Loop Model (CLM) (Fig. 3) [7].

Considering the OLM, the fuzzy model is placed parallel
to the process and is submitted to the same solicitationu(t)

wheret is the time. The deviation SR(t) of output predictions
ŷ1(t) from output measurementsy(t) is then evaluated to
produce residuals:

SR(t) = ŷ1(t) − y(t) (2)

Considering the CLM case, the fuzzy model is also placed
parallel to the process but in another closed loop with its own
controller. In this case, the performance of the real system

Fig. 3. CLM fuzzy model for residuals evaluation.
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is controlled thanks to the squared error between desired
and actual process output (Eq. (3)) within a time window of
predefined length (t0 − t1).

�SE= ŜE− SE (3)

with

ŜE=
∫ t1

t0

(w(t) − ŷ2(t))
2 dt (4)

SE=
∫ t1

t0

(w(t) − y(t))2 dt (5)

The quantification of the evaluated residuals (through the
different thresholds) to produce symptoms can, of course,
also be done thanks to fuzzy logic. In such a case, the thresh-
olds are fuzzy ones, varying around their nominal values.
In any case, a fault is detected on the process if at least one
symptom is not nominal.

2.2. Faults on a vehicle fuel cell power generator

The faults that have to be detected and diagnosed on a
fuel cell power generator implemented in a vehicle are very
numerous: from the major damage on the stack itself, which
implies the replacement of it, to the temporary variations of
the system output values that can be easily corrected through
the fuel cell control system.

Among these various faults, two have been considered so
far. The first one is the accumulation of nitrogen and/or water
in the anode compartment. In fact, in the PEMFC, oxygen
from the air reacts at the cathode with electrons taken from
the electrode and H+ protons from the electrolyte, to form
water according toEq. (6).

O2 + 4e− + 4H+ → 2H2O (6)

If no water is present at the anode, a back diffusion of wa-
ter from cathode to anode will take place, depending on the
thickness of the electrolyte membrane and the relative hu-
midity of each side. The same phenomenon will also take
place considering nitrogen which is present in the reactant
air. Therefore, accumulation of nitrogen and/or water in the
anode compartment may occur, especially when the PEMFC
is operating in dead-end mode with only a few flushes in the
anode compartment.

The second considered fault is an important drying of the
proton exchange membrane. This drying can occur because
the drying effect of air is non-linear in its relationship to
temperature[8]. When the temperature increases, the mem-
brane dries out (if no extra humidification of the reactant
gases is present) resulting in a drastic fall of the fuel cell
system electrical efficiency.

These two faults have been studied in preference and pri-
ority to the others. Firstly, they will often take place on a
fuel cell vehicle. Secondly, they can be corrected thanks to
the fuel cell system control. Thirdly, they do not imply a
major and non-reversible damage on the stack.

For the generation of residuals and thus the fault diag-
nosis process, only as few measurements on the system as
possible have been considered. Indeed, the on-line faults
diagnosis on fuel cell power generators should not imply
a lot of expensive additive sensors. Therefore, among the
various available measurements on a laboratory fuel cell
power generator (current, voltage, air and hydrogen flows,
inlet and outlet pressures, temperatures, single cell voltages,
. . . ), only the current and the voltage have here been cho-
sen to perform the diagnosis process[9,10]. Maybe these
two measurements are not enough to fulfill the faults local-
ization process, but as many information as possible will be
extracted from these two measurements.

3. Fuzzy diagnosis model of a proton exchange
membrane fuel cell power generator

3.1. Description

The considered fuel cell system is constituted by a
PEMFC that can be operated with pure or reformed hy-
drogen on the anode side and with air or oxygen on the
cathode side. The experimental stack is here only a low
power stack, but the results (and the fuzzy diagnosis model)
can be easy extrapolated to a more powerful fuel cell sys-
tem. The stack is made up of 20 cells (area 100 cm2) and is
able to supply an electrical power up to 500 W under 12 V.
The range of the operating temperatures begins at 15◦C to
go as far as 70◦C. Additional to the anode and cathode gas
circuits, a coolant desionized water circuit is used to extract
the calories from the stack.

The chosen method, for obtaining a fuzzy diagnosis
model of this fuel cell system, consists in determining a
so-called satisfaction rate (noted SR), by comparing the
obtained voltage-current operating point to the expected
nominal operating point. This satisfaction rate is then nor-
malized between 0 and 1 (1 is the better rate that can be
obtained). The expected nominal operating point is fixed
by the static voltage-current characteristic of the stack. An
OLM has been considered for the computation of residuals.
This method is less time consuming considering on-line
diagnosis case of the fuel cell system. Indeed, only one con-
troller output value has to be computed during the sampling
period.

3.2. Diagnosis-oriented fuzzy modeling of a PEMFC

According to what has been explained in the previous
paragraph, the first step is to identify the expected nominal
operating points. Therefore, the experimental static charac-
teristic of the PEMFC stack under nominal operating condi-
tions has been plotted (Fig. 4). Notice that, as the behavior
of a fuel cell system presents a hysteresis regarding current
evolution, this experimental static characteristic is the best
one that can be obtained on the considered fuel cell system.



242 D. Hissel et al. / Journal of Power Sources 128 (2004) 239–246

Fig. 4. PEM fuel cell stack voltage/current characteristic.

Fig. 5. Sugeno-type fuzzy model.

Then, a fuzzy model of the fuel cell system has to be built.
As previously said, this model should use only two inputs:
the voltageV and the currentI. The single output of this
fuzzy model is here directly the satisfaction rate SR (which
should be equal to 1 on the PEMFC static characteristic). So,
considering the whole diagnosis process, this fuzzy model
will directly provide a residual at its output, which can be
evaluated in a next step to produce a symptom. The closer
to 1 this residual will be, the better the performances of the
fuel cell system will be.

The calculation of the satisfaction rate is done thanks
to a two-inputs one-output Sugeno-type fuzzy system[11]
(Fig. 5).

Table 1
Linguistic rules table

(Un, In) µU,1 “Z” µU,2 “VS” µU,3 “S” µU,4 “M” µU,5 “B” µU,6 “VB” µU,7 “XB”

µI ,1 “Z” µSR,11 “Z” µSR,12 “VS” µSR,13 “S” µSR,14 “M” µSR,15 “B” µSR,16 “VB” µSR,17 “XB”
µI ,2 “VS” µSR,21 “VS” µSR,22 “S” µSR,23 “M” µSR,24 “B” µSR,25 “VB” µSR,26 “XB” µSR,27 “VB”
µI ,3 “S” µSR,31 “S” µSR,32 “M” µSR,33 “B” µSR,34 “VB” µSR,35 “XB” µSR,36 “VB” µSR,37 “B”
µI ,4 “M” µSR,41 “M” µSR,42 “B” µSR,43 “VB” µSR,44 “XB” µSR,45 “VB” µSR,46 “B” µSR,47 “M”
µI ,5 “B” µSR,51 “B” µSR,52 “VB” µSR,53 “XB” µSR,54 “VB” µSR,55 “B” µSR,56 “M” µSR,57 “S”
µI ,6 “VB” µSR,61 “VB” µSR,62 “XB” µSR,63 “VB” µSR,64 “B” µSR,65 “M” µSR,66 “S” µSR,67 “VS”
µI ,7 “XB” µSR,71 “XB” µSR,72 “VB” µSR,73 “B” µSR,74 “M” µSR,75 “S” µSR,76 “VS” µSR,77 “Z”

The first stage is the normalization of the two inputsU
(voltage) andI (current) between their min and max values.
This results in two normalized inputs, notedUn andIn that
vary between 0 and 1. Then, seven membership functions
are used for the fuzzification process. The seven membership
functions on both inputs are Gaussian ones; the membership
degree of inputUn(t) at the fuzzy subsetk (k ∈ [1, . . . , 7])
described by membership functionµU,k is thus given by
Eq. (7)

µU,k(t) = exp

(
− (Un(t) − mU,k)

2

2σ2
U,k

)
(7)

wheremU,k and σU,k are respectively the middle position
and the standard deviation of membership functionµU,k.

In the same way, the membership degree of inputIn(t) at
the fuzzy subsetm (m ∈ [1, . . . , 7]) described by member-
ship functionµI,m is given byEq. (8)

µI,m(t) = exp

(
− (In(t) − mI,m)2

2σ2
I,m

)
(8)

wheremI,m and σI,m are respectively the middle position
and the standard deviation of membership functionµI,m.

As a Sugeno-type fuzzy system is used, the output mem-
bership functions are only singletons, in our case seven sin-
gletons (“Z”: Zero; “VS”: Very Small; “S”: Small; “M”:
Medium; “B”: Big; “VB”: Very Big; “XB”: eXtra Big). The
considered linguistic rules table is a classical sloping diago-
nal table (Table 1) [12]. For example, this rules table is read
as follows (Eq. (9)):

IF (Un(t) is Very Small “VS”) AND (In(t) is Big “B” )

THEN (SR(t) is Very Big “VB” )
(9)

Thus, as a matter of fact, the defuzzified satisfaction rate is
the following (Eq. (10)):

SR(t) =
∑7

k=1
∑7

m=1(µU,k(t)µI,m(t))µSR,mk∑7
k=1

∑7
m=1(µU,k(t)µI,m(t))

(10)

The positions and the shapes of the different membership
functions have been determined through an optimization
procedure which is described in the next part of this paper.
The seven singletons at the output have been fixed during
this optimization procedure (so as to reduce the number of
freedom degrees). Moreover, as the satisfaction rate should
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Fig. 6. Satisfaction rate output singletons positions.

equal 1 on the static characteristic of the fuel cell and should
decrease rapidly around this characteristic (to ensure a good
stiffness of the diagnosis process), these seven singletons
have been placed as described byFig. 6.

4. Tuning of the fuzzy diagnosis model using genetic
algorithm

4.1. Genetic algorithm for fuzzy system optimization

The positions and the shapes of the seven membership
functions at each input were tuned using a specific genetic
algorithm (GA)[13,14]. Twenty-four parameters have here
to be tuned: the membership functions positionsmU,2 to
mU,6 andmI,2 to mI,6 (varying on the normalized universe
of discourse between 0 and 1) and the different standard
deviation valuesσU,k andσI,m (limited to vary between 0.02
and 0.15 for avoiding too narrow or too wide membership
function shapes).

4.1.1. Encoding of a chromosome, population size
A binary string is here used for the encoding of chromo-

somes. Each of the 24 parameters that have to be tuned is
encoded using 6 bits resulting in a 144 bits chromosome
for one individual in the population. The population size is
chosen equal to 200 and is randomly initialized.

4.1.2. Objective function
The considered optimization criterion is the sum of the

obtained satisfaction rates on 35 points placed along the fuel
cell static characteristic. The max level of this objective func-
tion is also the normalized value 35. Notice that a penalty
factor of 0.7 is applied on the objective function result when
the resulting different membership functions positionsmU,k

andmI,m are not ranked in ascending order.

4.1.3. Offspring generation, crossover and mutation
Half of the offspring generation is constituted using a tour-

nament selection. Two individuals are randomly selected and
the best one survives to new generation (with a probability
of 80%). The rest of offspring generation is constituted us-
ing a two point crossover method. The two parents are ran-
domly selected and two crossover points are also randomly
selected on the chromosomes. Next, two mutation bits are
selected on each offspring individual. Finally, the best indi-
vidual of last generation always survives to new generation.

4.1.4. GA optimization
Fig. 7presents the compared evolutions of best individual

objective function, worst individual objective function, me-
dian individual objective function and mean objective func-
tion during GA optimization process. As it can be seen,
200 generations have been used to perform this optimization

Fig. 7. GA optimization process of membership functions.
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Fig. 8. Inputs membership functions after optimization.

process and the best individual presents an objective func-
tion value of 30.9.

4.2. Optimization results

Fig. 8presents the inputs membership functions positions
and shapes corresponding to the best individual in population
after 200 generations.

The satisfaction rate SR obtained at the output, using the
tuned Sugeno-type fuzzy system is given byFig. 9. On the
same figure (Fig. 9) are presented the satisfaction rate (on
the whole range of current and voltage) and the static char-
acteristic of the fuel cell power generator. As it can be seen
on this figure, SR is very closed to 1 near the static charac-
teristic and decreases rapidly to reach 0 around this charac-
teristic. This ensures a very good stiffness for the residual
generation process and thus for the whole fuzzy diagnosis
process.

Moreover, as it can be seen onFig. 9, the satisfaction rate
will remain in the neighborhood of 1 if the current suddenly

Fig. 9. Fuzzy satisfaction rate vs. current and voltage.

vary without a voltage modification. This case takes place
during fuel cell transient states. In fact, due to the hydro-
gen and oxygen that are present in excess in the cathode
and anode compartment, the fuel cell is able to provide in-
stantaneously a relatively important overcurrent without an
important voltage variation[15].

5. Experimental results

5.1. Accumulation of nitrogen and water in the anode
compartment

The first fault that has been experimentally diagnosed
using the proposed fuzzy diagnosis model is the accumu-
lation of water and nitrogen in the anode compartment in
case of a dead-end mode use of the fuel cell. A fixed and
non-fuzzy threshold has here been used for the residual
evaluation.Fig. 10 presents the experimental results ob-
tained on the 500 W PEMFC. Fixing the threshold at a
0.9 level, a symptom is produced thanks to the fuzzy di-
agnosis model in less than 150 s. This threshold value has
been chosen considering a trade-off between three important
things:

• The first one is the required accuracy of the diagnosis
system versus accumulation of N2 and H2O in the anode
compartment; the aim is here to ensure in any case a min-
imum voltage value for each single cell. Such a minimum
voltage strategy leads also to an increase of the fuel cell
stack durability.

• The second one is the obtained stiffness of our diagnosis
system. As it is presented inFig. 10, the satisfaction rate
is decreasing rapidly between 0.95 and 0.65 satisfaction
rate levels and that, for a relatively small fuel cell stack
voltage modification.

Fig. 10. Evolution of voltage and SR when accumulation of nitrogen and
water occurs in anode compartment of the fuel cell.
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Fig. 11. Evolution of voltage and SR when temperature increases. (a)
FC voltage; current= 6 A; operating temperature= 18◦C. (b) Satisfac-
tion rate; current= 6 A; operating temperature= 18◦C. (c) FC volt-
age; current= 6 A; operating temperature= 50◦C. (d) Satisfaction rate;
current= 6 A; operating temperature= 50◦C.

• Finally, the third one is the required robustness of the
symptom generation process, especially its ability of
avoiding disturbing wrong alarms on the system.

5.2. Drying of the proton exchange membrane

Fig. 11presents the FC voltage and satisfaction rate evo-
lutions for a 6A current and for an ambient operating tem-
perature (Fig. 11a and b) or a 50◦C operating temperature
(Fig. 11c and d). As it can be seen on these figures, the
satisfaction rate is much closed to 1 when operating under
ambient temperature and decreases to 0.5 when operating
at 50◦C. Notice that no extra gas humidification was used
for these experiments. As in the last part of this paper, a
fixed threshold (0.8 in our case) has been used for the symp-
tom evaluation process. The choice of this second threshold
value has been made according the same physical reasons
as described for the accumulation fault. Nevertheless, as the

Fig. 12. Fault localization process.

drying of the membrane is less dynamical than the accumu-
lation of nitrogen and water in the anode compartment, it’s
possible to wait for a longer time before generating a symp-
tom, therefore a lower threshold value (0.8 in our case) has
been chosen.

5.3. Decision

The last stage in the diagnosis process is the decision
stage. In our case, a decision must be taken to detect which
fault (H2O/N2 accumulation in the anode compartment or
PEM drying) is currently occurring on the system. Due to
the fact that only one symptom SR(t) has been produced
thanks to the fuzzy model, the computation of the filtered
first time derivative of this satisfaction rate is very useful
(Fig. 12). The cutoff pulsation is here placed at a 1/τf =
0.1 rad/s level.

In fact, considering the two considered faults on the fuel
cell system, the decrease of SR(t) in case of accumulation of
water or nitrogen in the anode compartment is much swifter
(experimentally about 10 times swifter) than in the case of
PEM drying. Therefore, using the filtered first derivative of
SR(t) and using a fixed threshold (valuedth = 0.002 here,
this numerical value has been obtained thanks to different
tests on the real system and taking into account the noise
level that is present in the output of the fuzzy model SR(t))
on this time derivative signal, it is easy to detect which kind
of fault is currently occurring on the system. In our case, a
set/reset flip-flop has also been added on the derivative signal
to retain the input of the AND gate (Fig. 12). Using this pro-
posed fault localization process, when a PEM drying occurs
on the fuel cell, SR(t) is going under the 0.8 satisfaction rate
level, but the first derivative does not go over the so-called
dth threshold. Thus, only a drying fault is detected thanks
to the diagnosis process. The system is then shut down to
avoid any major damage on the fuel cell stack. Electrical
load should be removed and wet air provided to humidify
the proton exchange membrane. If a two high level of wa-
ter or nitrogen is present in the anode compartment, both
the satisfaction rate and the first derivative are going over
the proposed thresholds, resulting only in a H2O/N2 fault.
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In this case also, the system is shut down and the diagnosed
fault is provided to the user, who can then flush the anode
compartment. Thus, in the two considered fault cases on the
fuel cell system, the fuzzy diagnosis process has proved its
ability to fulfill the fault localization process.

6. Conclusion

To achieve the aim of the commercialization of no emis-
sion vehicles, an interesting solution could be the use of
a fuel cell power generation device instead of the internal
combustion engine (ICE). However, several milestones have
to be overcome before FC vehicles appear on the market at a
commercial price. One of them is the necessary development
of powerful FC diagnosis tools to increase the reliability
of such systems. This paper proposes a solution to perform
such diagnosis tools using fuzzy logic. Of course, the pro-
posed methodology takes only into account at the present
time two types of faults (accumulation of water/nitrogen in
the anode compartment and drying of the membrane). Nev-
ertheless, the same kind of methodology could be applied
for a greater number of considered faults. In this case, the
best solution would probably be to define and to tune accu-
rately (according to human expert knowledge) one different
fuzzy surface per considered fault and to propose a logic to
obtain, from the different generated residuals, the right fault
diagnosis.
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